

Simple Automated File Transfers Using SUP and Shift

April 4th, 2012
NASA Advanced Supercomputing Division

Overview

- SUP and Shift summary
 - What are they?
 - Why should you use them?
- Details of each
 - Usage
 - Features
 - Performance

Secure Unattended Proxy (SUP)

- What is it?
 - Authentication and authorization mechanism
 - Allows transfers and other remote commands to be invoked on NAS HEC systems without the use of SecurID for up to a week
- Why should you use it?
 - Highest performance transfer mechanism
 - Direct remote transfers to/from Pleiades, Columbia, and Lou
 - 10 GE connectivity with no intermediate disk limitations/bottlenecks
 - Transfers without the use of SecurID for a week
 - Scripted transfers are easily achievable
 - Interactive transfers are more convenient
 - ...and more

Self-Healing Independent File Transfer (Shift)

- What is it?
 - Automated file transfer mechanism
 - Built on top of SUP
- Why should you use it?
 - Supports local, intra-enclave, and remote transfers
 - As easy to use as cp/scp
 - Provides notifications and on-demand status of transfers
 - Takes care of numerous details so you don't have to
 - Advanced performance and reliability features

SUP Position Within NAS HEC Environment

Basic SUP Model

- Obtain a "SUP key" using SecurID authentication
 - SUP keys are SSH private keys
 - SUP keys are valid for one week
- Use SUP key to invoke remote SSH commands on NAS HEC hosts
 - Currently authorized commands
 - bbftp (+bbscp), qstat, rsync, scp, sftp, test
 - bbcp and gridftp likely in near future
 - Other commands as needed
 - Currently supported hosts
 - pfe*, bridge*, cfe*, lou*, susan
- SUP operations always initiated from non-HEC host
 - Files can still be moved in any direction
- Remote SSH commands always hop through SUP system
 - Data can go direct to/from destination (discussed later)

SUP Prerequisites On Your Local Host

- SUP assumes availability/use of OpenSSH
 - Standard on most Linux/Unix distributions
 - Available on Windows via Cygwin or coLinux
- SUP client significantly simplifies SUP usage
 - Requires Perl >= 5.6.1 (Perl >= 5.8.5 for advanced features)
 - Standard on most Linux/Unix distributions
 - Available on Windows via Cygwin or coLinux
- SUP can be used without SUP client
 - Won't be discussed further
 - See http://www.nas.nasa.gov/hecc/support/kb/entry/241

SUP Client Setup On Your Local Host

Download client

- Via browser
 - http://www.nas.nasa.gov/hecc/support/kb/file/9
 - Save downloaded file as "sup"
- Via command-line tool
 - wget -O sup http://www.nas.nasa.gov/hecc/support/kb/file/9
 - curl -o sup http://www.nas.nasa.gov/hecc/support/kb/file/9
- 2. Make client executable
 - chmod 700 sup
- 3. Move client to directory in your \$PATH
 - mv sup ~/bin

SUP Authorizations

- The SUP enforces restrictions not found in other transfer mechanisms since it permits direct transfers without SecurID
 - SUP functionality must be explicitly enabled
 - ~/.meshrc must exist on each NAS HEC enclave system
 - Only specifically authorized commands can be invoked on NAS HEC systems
 - Currently bbftp (+bbscp), qstat, rsync, scp, sftp, test
 - Only files in directories explicitly authorized by the user can be written
 - Dot files in the user's home directory (~/.*) can never be read or written
 - You cannot interactively log in to the SUP
 - "ssh sup" = "Permission denied (unauthorized command)"
 - You cannot transfer files to the SUP itself
 - "scp /some/file sup:" = "Permission denied (unauthorized command)"

Authorization Setup On NAS HEC Hosts

- Authorize NAS HEC host for SUP operations
 - Create ~/.meshrc on pfe, cfe2, and/or lou1/2
- Authorize directories for writes
 - Add directories (one per line) to ~/.meshrc
 - A directory in ~/.meshrc allow writes to items in that directory and in any subdirectory
 - For example, /nobackup/user in ~/.meshrc implies:
 - /nobackup/user not removable
 - /nobackup/user/dir creatable/removable
 - /nobackup/user/file creatable/writable/removable
 - /nobackup/user/dir/.../file creatable/writable/removable

Using the SUP Client

- Begin command with "sup" (i.e. the SUP client)
- Run commands as if directly connected to NAS HEC resources
 - Client transparently rewrites command to flow through SUP
- Examples (from your local host)
 - sup scp /some/file pfe:/dir
 - sup bbftp -e "put /some/file /dir" pfe1.nas.nasa.gov
 - sup bbscp /some/file pfe1.nas.nasa.gov:
 - sup ssh pfe qstat
 - sup rsync /some/file pfe:/dir
 - sup ssh pfe test -f /dir/file
- Client may request information when new SUP key needed

Information That SUP Client May Request During SUP Key Generation

- Host key verification
 - Continue connecting if two printed SSH key fingerprints match
 - Example fingerprint: 52:f3:61:9b:9c:73:79:4d:22:cb:f3:cd:9a:29:4e:fe
- Authentication credentials
 - Passphrase for new/existing SSH private key (~/.ssh/id_rsa)
 - Password and SecurID passcode for {sup,sup-key}.nas.nasa.gov
- Client upgrade (please always answer "y"!)
 - Primary mechanism for distributing bug fixes and new features
 - Website version is mainly for initial setup
 - Client is regression tested before release
 - What worked before upgrade should work after upgrade
 - · Some undetected problems on older SSH clients during Shift rollout
- Use client's -b option when running scripted SUP operations
 - Sets batch mode where user interaction disabled
 - Note that SUP operations will fail with -b if your SUP key has expired

SUP Client Sample Session

When your SUP key has expired after a week

yourhost% sup scp /some/file pfe:dir

Generating key on sup.nas.nasa.gov (provide login information)

Password: *******

Enter PASSCODE: *******

Identity added: /home/user/.ssh/meshkey.1332973211

(/home/user/.ssh/meshkey.1332973211)

Lifetime set to 604800 seconds

file 100% 3906MB 71.0MB/s 00:55

When you already have a valid SUP key

yourhost% sup scp /some/file pfe:dir

file 100% 3906MB 71.0MB/s 00:55

- When you are a completely new SUP user
 - See http://www.nas.nasa.gov/hecc/support/kb/entry/145

SUP Client Caveats (User Names)

- Client does not currently support user names embedded within commands
 - sup scp /some/file user@pfe:/dir **
 - sup ssh -l user pfe qstat *
 - sup bbftp -u user -e "put /some/file /dir" pfe1.nas.nas.gov ★
- If your local user name differs from your NAS user name, there are two options on your local host
 - Modify ~/.ssh/config to use NAS user name on sup/sup-key

```
Host sup.nas.nasa.gov sup-key.nas.nasa.gov ✔
User NAS_username
```

- Use client's -u option
 - sup -u NAS_username scp /some/file pfe:/dir

SUP Client Caveats (Commands)

- Bbftp (and bbscp since it uses bbftp)
 - NAS host names must be fully qualified outside NAS domain
 - sup bbftp -e "put /some/file /dir" pfe1 **
 - sup bbftp -e "put /some/file /dir" pfe1.nas.nasa.gov ✓
 - Load balancer aliases "pfe" and "bridge" will not work
 - sup bbftp -e "put /some/file /dir" bridge.nas.nasa.gov *
 - sup bbftp -e "put /some/file /dir" bridge1.nas.nasa.gov ✓
 - Port range may be needed if your site restricts outbound port usage
 - By default, the range 50000-51000 is used
 - Ranges 5000-5011 and 5020-5022 also available
 - sup bbftp -E "bbftpd -e 5000:5011" ...

SUP Client Caveats (Commands cont.)

Rsync

- Transfers to home directory can fail even if home directory authorized for writes due to use of temp files starting with "."
 - sup rsync /some/file pfe: *
- Use --inplace for rsync transfers to home directory
 - sup rsync --inplace /some/file pfe:

Scp

- Third-party transfers are not supported
 - sup scp pfe:/some/file somehost:/dir *
 - scp pfe:/some/file somehost:/dir ✓ (SUP not involved)
 - ssh somehost sup scp pfe:/some/file /dir
 - Assuming SUP client installed on somehost

SUP Troubleshooting

- Permission denied (~/.meshrc not found)
 - ~/.meshrc must exist on each NAS target host
 - Pleiades, Columbia, and Lou do not share home directories
- Permission denied (unauthorized command)
 - Only a specific set of commands is allowed through the SUP
 - Some specific options may be disabled
 - Not needed in common usage scenarios
- Permission denied during file access (various forms)
 - Destination directory has not been authorized for writes
 - Add destination directory or parent directory to ~/.meshrc
 - Attempted read/write of ~/.*

SUP Performance Comparison

Transfer of 4 GB File to Pleiades /nobackup

Increasing SUP Transfer Performance

- Tune your local host(s) for WAN transfers
 - See previous webinar
 - "How Can I Speed Up My Data Transfers to/from NAS?"
 - See http://www.nas.nasa.gov/hecc/support/kb/entry/137
 - Note that WAN tuning may impact your LAN performance
- Install/use bbftp instead of rsync/scp/sftp
 - Bbftp data channels bypass SUP entirely
 - Bbftp data channels are not encrypted
 - Do not use bbftp for sensitive data!
 - See http://www.nas.nasa.gov/hecc/support/kb/entry/147

SUP Advanced Features

- Remote job monitoring using qstat for automated workflows
 - For example, transfer results when job done (in bash syntax) while [!-d results]; do
 sup -b ssh pfe qstat job.id II sup -b scp -r pfe:/dir/results.
 sleep 600
 done
- Remote file monitoring using test for automated workflows
 - For example, transfer intermediate results of running job (in bash syntax) while [!-d part1]; do
 sup -b ssh pfe test -f /dir/part1.done && sup -b scp -r /dir/part1.
 sleep 600
 done
 - Here, the job must create /dir/part1.done when results available

SUP Advanced Features (cont.)

- SUP virtual file system
 - Remotely access files on NAS HEC hosts using standard file system commands via bash shell
 - Remote files specified in scp HOST:/PATH format
 - Currently supported commands
 - cat, cd, chgrp, chmod, chown, cmp, cp, df, diff, du, file, grep, head, less, ln, ls, mkdir, more, mv, pwd, rm, rmdir, tail, tee, test, touch, wc
 - Enable with eval `sup -s bash` and disable with eval `sup -r bash`
 - Why use it?
 - Intersperse local/remote file operations on command line and in scripts
 - Scripts must use "#!/bin/bash" and start with "shopt -s expand_aliases"
 - Most efficient way to <u>repeatedly</u> transfer and/or operate on small files
 - Uses a single connection for all file operations on the same host
 - Functionality has various caveats and limitations
 - Avoid "whole file" commands (cat, cmp, diff, grep, wc) on large files!
 - See http://www.nas.nasa.gov/hecc/support/kb/entry/240

SUP Virtual File System Sample Session


```
yourhost% bash
bash-3.2$ export PS1="\h[\w]> "
yourhost[~]> eval `sup -s bash`
yourhost[~]> cd pfe:/etc
yourhost[pfe:/etc]> ls -l HOST<tab>
yourhost[pfe:/etc]> ls -l HOSTNAME
-rw-r--r-- 1 root root 18 Apr 05 2011 /etc/HOSTNAME
yourhost[pfe:/etc]> diff HOSTNAME /etc/HOSTNAME
1c1
< pfe5.nas.nasa.qov
> yourhost.yourdomain
vourhost[pfe:/etc]> cp HOSTNAME ~
vourhost[pfe:/etc]> cat ~/HOSTNAME
pfe5.nas.nasa.qov
```

From SUP To Shift

- SUP provides benefits on its own
 - Improved performance
 - Increased convenience
 - Scripted transfer and file/job monitoring
 - Virtual file system
- Users still responsible for understanding transports
 - Which transports are available
 - When and how to use each transport
 - What idiosyncrasies may exist in each transport
 - How to optimize each transport
 - How to detect and recover from failures in each transport

From SUP To Shift (cont.)

- Users still responsible for understanding hosts
 - Which hosts are available
 - Which hosts likely to have best performance in general
 - Which hosts likely to have best performance at a given time
- Shift extends SUP functionality with an automated transfer capability
 - Shift has extensive embedded knowledge of transports
 - Shift has embedded knowledge of NAS hosts
 - Shift is integrated with load balancing infrastructure

Self-Healing Independent File Transfer (Shift)

Part 2/2

Shift Transfers

Simple

- Drop-in replacement for cp/scp

Automated

- Fire and forget with notifications of completion, errors, and warnings by email
- On-demand status

Reliable

- Recovers from multiple types of system/transport failures
- Restart of failed transfers
- Optional integrity verification with partial file retransmission

Fast

- Automatic transport selection and optimization
- Automatic host selection based on availability, load, and performance
- Integrated DMF management for optimized file recall
- Single and multi-file parallelization

Shift Client Setup

- NAS HEC hosts
 - None!
 - Already exists as "shiftc" in /usr/local/bin
- Remote hosts
 - Install SUP client if not already done
 - Embedded within client using "sup shiftc ..."
 - Still need to authorize NAS HEC hosts for SUP operations
 - Create ~/.meshrc if it does not exist
 - Still need to authorize directories for writes
 - Add top level directories to ~/.meshrc

Shift Transfer Initialization

- Local transfers (just like "cp")
 - bridge% cp /file1 /file2
 - bridge% shiftc /file1 /file2
- Intra-enclave transfers (just like "scp")
 - bridge% scp /file1 lou:/file2
 - bridge% shiftc /file1 lou:/file2
- Remote transfers (just like "sup scp")
 - yourhost% sup scp /file1 pfe:/file2
 - yourhost% sup shiftc /file1 pfe:/file2
 - SUP user name caveats still apply
 - Can use pfe/bridge aliases and unqualified NAS hosts from anywhere!

Shift Transfer Initialization (cont.)

- Common initialization options
 - Recursive transfers (-r, -R, --recursive...just like cp/scp)
 - Copy directories recursively
 - Attribute preservation (-p, --preserve...just like cp/scp)
 - Preserve times, permissions, and ownership
 - Link preservation (-P, --no-dereference...just like cp)
 - Never follow symbolic links
 - Can result in broken links at destination
 - Link dereferencing (-L, --dereference...just like cp)
 - Always follow symbolic links
 - Can result in duplicate files at destination
 - Data encryption (--encrypt)
 - Encrypt data stream(s) during remote transfers
 - Eliminates bbftp so may reduce performance

Shift Transfer Initialization (cont.)

- Shift computes file operations in transfer and prints transfer id
 - Initialization output

Directories/files found: 0/1

Shift id is 1

- The id can be used to manage/obtain status about a particular transfer
- So far, Shift looks like any other transfer command
 - What are the benefits over traditional transfers…?

Shift Benefit: Background Transfers

- After initialization, Shift detaches and begins the transfer
 - You do not need to stay logged on to the origin system
 - You will be notified by email of completion, errors, and/or warnings
- A running transfer may be stopped at any time from any host
 - shiftc --stop --id=N
 - Batches of file operations in progress will run to completion
- Shift provides history of transfers
 - shiftc --history
 - Transfer data only kept for one week after completion/error/stop!

Shift Transfer History

pfe% shiftc --history

Shift Benefit: Transfer Status

- Traditional transfers often provide minimal feedback
 - cp: no output
 - scp: long scrolling list of file names without directories
- Users left wondering about running transfers
 - What has been done?
 - What is left to do?
 - Are there any problems?
 - How long is it likely to take?
- Shift provides summarized status of all transfers
 - State, portion complete, and performance
 - shiftc --status
- Shift provides detailed status of individual transfers
 - State, error messages, tool used, and performance of each file operation
 - shiftc --status --id=N

Shift Benefit: Transfer Status (cont.)

pfe% shiftc --status

id	state	dirs	files	file size	start	time	rate
		sums	attrs	sum size			
+	+			+	+	+	·
1	done	0/0	1/1	92KB/92KB	10/03	2s	46KB/s
		0/0	0/0	0.0B/0.0B	17:06		
2	done	0/0	1/1	92KB/92KB	10/03	8s	11.5KB/s
		0/0	1/1	0.0B/0.0B	17:06		
3	done	1/1	2/2	99KB/99KB	10/03	1s	99KB/s
		4/4	0/0	198КВ/198КВ	17:07		
4	error	1/1	1/2	92KB/99KB	10/03	3s	30.7KB/s
		0/0	0/0	0.0B/0.0B	17:08		
5	done	1/1	64/64	65.5GB/65.5GB	10/03	29s	2.26GB/s
		0/0	0/0	0.0B/0.0B	17:09		

Shift Benefit: Transfer Status (cont.)

yourhost% sup shiftc --status --id=2

state	op	target	size	start	time	rate
	tool	message				
	+	+	+	+	+	+
done	ср	cfe2:/u/user1/file1	92KB	10/03	5s	18KB/s
	bbftp	-		17:06		
done	chattr	cfe2:/u/user1/file1	-	10/03	1s	_
	sftp	-		17:06		

yourhost% sup shiftc --status --id=4 --state=error

Shift Benefit: Transport Selection

- In traditional transfers, users are left deciding which transport should be utilized and how
 - May be better transports available
 - May be unknown options that increase performance
 - May be unknown idiosyncrasies
- Shift chooses most effective transport for each task
 - Availability (use transports available at both source and destination)
 - Performance (use higher performance transports first)
 - Functionality (e.g. bbftp cannot perform partial transfers)
- Shift understands how to utilize selected transport
 - How to construct command lines
 - Which arguments to use for optimum performance
 - How to parse output to detect success or failure

Shift Benefit: Transport Selection (cont.)

- Currently supported transports (more to come)
 - Local: mcp (high performance cp), rsync, cp (built-in perl equivalent)
 - Remote: bbftp, rsync, sftp (built-in perl equivalent)
- Can still force specific transport(s)
 - --local={mcp,rsync,cp} or --remote={bbftp,rsync,sftp}
 - shiftc --local=mcp,cp /some/file /dir
 - shiftc --remote=rsync /some/file lou:/dir
 - Only recommended for specific scenarios
 - Force use of rsync to synchronize mostly similar directories
 - Test performance/functionality of specific transport
 - Repeated errors with default Shift selection (notify NAS support!)
 - Shift will always use built-in transports (cp/sftp) for certain tasks

Shift Benefit: Host Selection

- Original host(s) specified in transfer may be nonoptimal
 - May become unavailable during large transfers
 - Other activity on system may degrade performance
 - Higher performance options may be available
 - For example, system with 10 GE interface
- Shift automatically replaces remote NAS hosts with lower load and/or higher performance systems
 - Any host used will have equivalent file system access
 - File operations will be rewritten as necessary
 - Original remote host given will likely not be used
 - Host on which transfer initiated will always be used

Shift Benefit: Transfer Recovery and Restart

- Failures during traditional transfers can waste significant time
 - Manually determine which parts of the transfer have failed and manually construct the commands to retry them
 - Redo the entire transfer without regard to previously transferred files
- Shift tracks and classifies failures by recoverability
 - "Recoverable" errors will be attempted again automatically
 - "Unrecoverable" errors will not be retried
 - Shift currently classifies more as unrecoverable than recoverable
 - Classifications will be refined over time
 - In the meantime, use restart capability...

Shift Benefit: Transfer Recovery and Restart (cont.)

- NASA
- Shift allows failed/stopped transfers to be easily restarted
 - Completed operations will not be run again
 - Failed operations will be retried
 - Operations that were never attempted will be performed
- Restarting a transfer with a given id
 - shiftc --restart --id=N
 - Transfer has previously failed with errors or been stopped
 - Must restart on original host or one with equivalent file system access!
- Shift automatically resumes transfers after system reboots or process failures
 - Shift inserts a crontab entry for each running transfer
 - Cron-invoked Shift process will check on health of initial Shift process
 - Will take over as needed
 - Crontab entries will be cleaned up upon transfer completion

Shift Benefit: Integrity Verification

- Files traverse many components during a transfer
 - Subject to transient failures within each component
 - May induce corruption not detectable by error detection/ correction measures of each
- Traditional hash (e.g. md5sum) verification only indicates that some part of the file has changed
 - Either manually find difference or transfer again
 - Both are time consuming for large files

Shift Benefit: Integrity Verification (cont.)

- Shift can verify that file contents on destination disk match contents on source disk using --verify
 - shiftc --verify /some/file pfe:/dir
- Shift can locate the source of corruption
 - Currently detects corruption at granularity of 1 GB
- Shift can rectify corruption using partial transfers
 - Currently rectifies corruption at granularity of 1 GB
- Computationally expensive so optional
 - Higher impact on high speed links

Shift Benefit: DMF Management

- Files on Lou may have been migrated to tape
- Migrated files must be brought online before transfer
- DMF does this for you during transfers from Lou
 - Can be extremely slow as files recalled one at a time

Shift Benefit: DMF Management (cont.)

- Should use dmget to recall files before transfer
 - Lou has a limited amount of online storage
 - Large amounts of data may need to be recalled in stages
- Shift does dmget for you
 - DMF file systems automatically detected
 - Migrated files are recalled in batches as needed
- Shift does dmput for everyone
 - Files migrated to tape after successful transfer/verification
 - Preserves online storage resources for other users
 - Use --no-offline to prevent migration
 - shiftc --no-offline /some/file lou:
 - shiftc --no-offline lou:/some/file /dir

Shift Benefit: Multi-File Parallelization

- The maximum transfer rate between two sites is often greater than that achievable between two hosts at those sites
 - Single host limitations (I/O rate, network interface, CPU, ...)
- Shift can use multiple hosts to carry out the same transfer with the --hosts option
 - Must be multiple sources/targets with access to same file system
 - Local transfers on Pleiades
 - shiftc --hosts=4 -r /nobackupp3/user/dir /nobackupp4/user/dir
 - Remote transfers from other clusters to/from Pleiades
 - sup shiftc --hosts=2 -r /some/dir pfe:/nobackup/user/dir
 - No effect otherwise
 - Transfers from Lou/Columbia home file systems
 - Remote transfers from standalone systems

Shift Benefit: Multi-File Parallelization (cont.)

- Shift knows about hosts and file systems within the NAS HEC environment
- Shift does not (initially) know about hosts and file systems within your environment
 - Shift learns incrementally when you initiate transfers
 - Knows you have access to origin host
 - Knows which shared file systems exist on origin host
 - Stores this information in ~/.shift.fs on any host that initiates a transfer
 - You can populate this info more quickly using a small transfer from each host
- Information used by Shift to spawn clients on other hosts
 - You have access to the host
 - The host has access to the relevant local file system
 - There is enough work left for the host
 - You can authenticate to the host from the origin host
 - Hostbased authentication
 - Pubkey authentication with SSH agent running on origin host

Shift Remote Performance (1k*4MB Files and 64*1GB Files via 10 GE WAN)

Shift Local Performance (1k*4MB Files and 64*1GB Files Lustre->Lustre)

Shift Benefit: Single File Parallelization

- Transfers of large files can cause parallel clients to become imbalanced
 - One client transferring file, others remain idle
- Shift supports parallelization of single file transfers using -split-size option
 - sup shiftc --split-size=1g --hosts=8 /big/file bridge:/dir
 - No effect unless --hosts also specified
- Uses partial transfer capabilities of some transports
 - Local case uses mcp or built-in cp
 - Remote case uses gridftp or built-in sftp
 - Problem 1: gridftp not deployed for all users yet
 - Problem 2: sftp is slow
 - Solution 1: gridftp will be deployed for all
 - Solution 2: built-in sftp will be replaced with faster option

Shift Single File Parallelization Performance (1 64GB File via 10 Gb/s WAN and Lustre->Lustre)

Some Initial Problems (Now Fixed)

- SUP/Shift client used ciphers/MACs not available in some older OpenSSH clients
 - Client now tests for existence of ciphers/MACs before use
- Shift selected pfe's for lou transfers instead of bridge nodes
 - Resulted in saturation of 1 GE pfe links and bbftp errors
 - Shift now uses bridge nodes to/from Lou when available
 - If you transfer to/from Lou, initialize transfer from bridge/lou!
- High performance patch of SSH client on newly deployed 10 GE SUP could exceed max TCP buffer size
 - Resulted in lost connections in some scenarios
 - Replaced with stock SSH client

Conclusion

- Secure Unattended Proxy (SUP)
 - Functionality
 - Interactive/scripted transfers and remote file/job monitoring
 - Convenience
 - Only need to use SecurID once a week
 - Simple to use by prepending "sup" to commands
 - "scp /some/file pfe:" becomes "sup scp /some/file pfe:"
 - Performance
 - Direct transfers to NAS HEC hosts over a high speed link with no intermediate storage limitations/bottlenecks
 - Knowledge base article
 - http://www.nas.nasa.gov/hecc/support/kb/entry/145

Conclusion (cont.)

- Self-Healing Independent File Transfer (Shift)
 - Functionality
 - Automated file transfer with advanced tracking and failure recovery
 - Convenience
 - Fire and forget transfers with simple usage a la cp/scp
 - Performance
 - Numerous optimizations spanning transports, hosts, and environments
 - Parallelization can achieve rates far beyond standard transports
 - Some near term enhancements, among others...
 - Support for bbcp and gridftp with transport selection based on file sizes
 - Significantly faster built-in remote transport
 - Early prototype over 6x faster than sftp in initial testing
 - Will make single file parallelization more practical without gridftp
 - Knowledge base article
 - http://www.nas.nasa.gov/hecc/support/kb/entry/300